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ABSTRACT 

Numerical solutions of the Navier-Stokes equations have been 
obtained for the flow of a'compressible.viscous fluid around a 
right circular cylinder. All planes normal to the cylinder axis 
are assumed to be planes of symmetry for the system. A computer 
code (called AFTON 2P) which solves the equations of motion of a 
general continuous medium for two-dimensional plane symmetric 
systems, was specialized to the case of a Stokesian fluid and 
used to solve these problems. Eulerian boundary conditions were 
developed for both subsonic and supersonic flow in a form suitable 
for numerical computation, and put into the code. The Mach number 
in all flows was 0.2. The Reynolds number R was varied over the 
range R = 100 to R =m ; no data are presented here above a Reynolds 
number of 5000. Three different finite difference meshes were 
used to provide information on the effect of the mesh point density 
on the numerical solutions. At R = 100 and R = 1000, vortices 
formed in the wake of the cylinder in a manner similar to that 
observed experimentally. With R = 5000, a random-looking velocity 
field, rather than a vortex flow pattern, developed in the wake 
of the cylinder - again in qualitative agreement with experiment. 

The system with R = 100, which was otherwise symmetric about 
a plane through the cylinder axis, was perturbed asymmetrically 
in order to induce vortex shedding. A vortex street developed 
with a shedding frequency within 10 percent of that measured 
experimentally. 

Using our finest mesh, the code predicted sizable pressure 
fluctuations for R = 1000 in the neighborhood of the cylinder, 
at a dominant frequency of about 50 kilocycles. It is not clear 
yet whether these fluctuations are physically real, or a quirk 
of the numerical method. With sufficiently coarse meshes or 
appropriate time averages, the pressures calculated at various 
points of the cylinder were in fair agreement with those measured. 
Graphs of the pressure as a function of the cylinder angle 13 are 
presented, as are many plots of the velocity fields obtained in 
the calculations. 
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1.0 INTRODUCTION 

1.1 Objectives and Summary of Major Results 

The overall objective of this program was to determine 

the feasibility of solving the equations of motion of a viscous 

compressible fluid for systems of practical interest by recently 

developed numerical techniques. To attack such problems numer- 

ically, the continuous variables of space and time are replaced 

by a finite discrete mesh of points. As the density of points 

in the mesh is increased, it more and more closely approximates 

the space-time continuum, at least in the sense that any piece- 

wise continuous function can be represented more and more 

accurately by specifying its discrete values at the mesh points. 

It also appears that finite difference equations can be written 

whose solutions approach those of the equations of motion of 

the continuous medium in the same sense - as the mesh point 

density is increased, the discrete values of the flow variables, 

found at the mesh points from the finite difference equations, 

more and more closely approximate an exact solution of the 

equations of motion. No formal proof of this statement can be 

given, but it is strongly suggested by general experience over 

the last twenty years - approximately the span of time in which 

finite difference methods have been used extensively to solve 

continuum motion problems. Of course, it is also true that the 

cost of solution of a given problem increases when the density 



of discrete mesh points is increased. Hence, the question of 

the feasibility of these methods for viscous compressible flow 

problems ultimately becomes an economic one - can such problems 

be solved cheaply enough to make the method practical? To a 

lesser extent, feasibility is also a question of how long a compute 

must be run to solve such a problem. However, the cost, speed 

and reliability of presently available computers are such that 

in deciding whether a numerical technique is useful, cost consider- 

ations usually overwhelm such factors as the length of computing 

time needed, or the possibility of machine error. 

Numerical methods developed earlier by the people active 

in this program were made the basis for all the calculations 

l-4 of the program. As a test of these methods, attention was 

focussed on the problem of compressible viscous fluid flow 

around an infinite right circular cylinder. It was assumed 

that the Navier-Stokes equations governed the flow of the fluid 

while a polytropic gas equation of state determined its pressure. 

This case was chosen for two reasons. First, prior to the start 

of this program, a computer code had been developed to describe 

the plane symmetric flow of a general continuous medium. 4 Secondly, 

this particular viscous flow problem seems to have been studied 

experimentally more thoroughly than any other, so that it offers the 



possibility of a relatively good check on the numerical results. 

In the course of the program, flow fields were calculated numer-. 

ically for several Reynolds numbers from 100 to infinity, a range 

of values which includes the formation of vortex streets and 

turbulent wakes, and the transition between them. By comparing 

the results of these calculations with measured results, one can 

get a general idea of the accuracy of the numerical method for 

problems of this kind. A basis for comparison between experiment 

and numerical theory is found in such flow characteristics as the 

stress on the cylinder at various points, the appearance and position 

of a point of separation of a flow, and the,frequency of shedding 

of vortices. 

Similar calculations for incompressible fluid flow have,been 

made by other investigators, with very impressive results. 596 

It is important to distinguish the methods used in this program 

from those employed to solve incompressible fluid flow problems. 

In that case, the fact that the flow is .divergenceless is essential 

to the formulation of the differential equations whose solution 

is to be effected numerically. The techniques used in this Program 

are free of this restriction; they apply to the general motions 

of continuous media in two-dimensional plane geometry, rather than 

to the smaller class of incompressible flow problems. In fact, 



incompressible flow can only be approached as a limiting case by 

the methods used here. The reason for this is that the numerical 

solution of a flow problem proceeds in finite time-steps whose 

size is inversely proportional to the sound speed in some part of 

the flow field. Since the speed of sound is infinite for an 

incompressible fluid, the calculation would have to be made with 

infinitesimal time-steps, and would require infinite computing 

time on a digital computer. 

To some extent, the results presented here show that the 

numerical methods used to obtain them provide a practical approach 

to the solution of general viscous compressible fluid flow 

problems; to what extent, is at least partly a subjective matter. 

On the whole, it seems fair to claim that these numerical methods 

are of practical significance now, and will probably constitute 

an important theoretical tool for the study of turbulence (and 

viscous fluid flow phenomena in general) in the future. While 

the method cannot be endorsed without reservation on the basis of 

the work of this program, it has so far been quite successful in 

most respects. First, at a Reynolds number of 100, sufficiently 

extensive calculations were made to allow the shedding of several 

vortices and the formation of a clearly defined vortex street. 

Next, it was found possible to describe qualitatively the formation 

of vortices in the range of Reynolds numbers from 100 to 1000. 

4 



Further, it was found that at a Reynolds number of 5000, no vortex 

formation took place at all, but only something resembling the 

formation of a turbulent wake. This is in agreement with experi- 

mental observation; between a Reynolds number of 1000 and 5000 

the flow field for some reason changes its character drastically 
7 

in this way. It was hoped that some light could be shed on the 

reason for the transition. In this connection, the numerical 

results for a Reynolds number of 100 indicated an aspect of the 

flow field behavior which may be important in the formation of 

turbulent wakes. In analyzing the pressure at various positions 

on the cylinder, it was found that as the mesh was refined, the 

pressure field tended to have a random spatial variation. As 

a function of time, the pressure appeared,on closer inspection, 

to undergo roughly periodic oscillations whose amplitude was a 

sizeable fraction of the pressure head. Each of the points 

studied at the back side of the cylinder showed generally this 

same kind of pressure-time fluctuation. However, all of the 

pressure-time curves were out of phase, so that at any given 

instant the pressure field appeared to be spatially random. At 

a Reynolds number of 1000, the period of these oscillations was 

found to be about 20 microseconds; no study has been made yet to 

determine whether the mean period varies with Reynolds number. At 

lower Reynolds numbers, i.e., for fluids of greater viscosity, the 

pressure fluctuations were reduced in amplitude, owing to the 
5 



damping effect of the viscous forces. At a Reynolds number of 

l'OO0, these fluctuations are large; with a further reduction 

in viscosity, they would most likely become even larger and might 

dominate the flow entirely. The computer code results suggest 

that this is indeed what happens when vortex formation passes 

over into turbulent flow with increasing Reynolds number. Where 

coarser meshes are used, or if the pressures obtained with fine 

meshes are averaged over a suitably long time interval, then the 

calculated pressures agree more closely with available experimenta 

data. However, there is at least one respect in which the numeric: 

results obtained so far are not satisfactory. The region occupied 

by the vortex street appears to be more constricted near the 

cylindrical obstacle than experimental streamline flow patterns 

indicate; the vortices .are narrower than they should be, and 

appear to be elongated in the direction of the free stream flow. 

Nevertheless, the frequency of shedding of vortices at a Reynolds 

number of 100 (the only case tested in this respect) agrees well, 

i.e., to within ten per cent, with the value found experimentally. 

On the whole, the results obtained in this program might reasonabl: 

be said to establish these numerical methods as a practical design 

tool of considerable promise for a much larger class of viscous 

compressible fluid systems than has heretofore been mathematically 

tractable. 

6 



1.2 Economic &imitations of the Numerical Method 

There are two general approaches to the numerical solution 

of the equations of'motion of a continuous medium.. These can be 

classified as time-marching methods and characteristic methods. 

Time-marching methods make explicit use of time as an independent 

variable in accord with the most elementary and basic statements 

of the underlyfng principles of classical mechanics. l-4,8 on 

$he other hand, characteristic methods, which treat continuum 

motion as a problem in wave propagation, make use of the envelopes 

of sound signals in space-time as coordinate surfaces. ' The 

numerical technique used here, and the computer codes based on 

it, are of the time-marching kind. Numerical methods of'this 

kind share an important common restriction on the accuracy of the 

numerical solutions which they provide. 4 The values of the variables 

of the motion at the points of the finite difference mesh can, and 

hopefully do, converge toward values of an exact solution of the 

equations of continuum motion as the density of mesh points is 

increased. However, the rate of convergence is sharply limited as 

a function of a typical or mean mesh spacing parameter h; the error 

in the finite difference solution, as compared to the exact solution, 

cannot be made to tend to zero more rapidly than h 3/2 4 . The reason 

for this restriction lies ultimately in the finite speed of sound 

7 



in real materials. Since disturbances require a finite time to 

propagate over finite distances, quite different physical states 

can coexist in the same finite region. For example, one part of 

a gas column can find itself in a uniformly quiet state, while 

another part of the same column of gas is in motion. As a result, 

in almost all continuum motion problems of interest, space-time 

is divided into finite regions by surfaces across which some 

derivatives of the flow variables with respect to position or time 

experience a jump discontinuity. Moreover, these derivatives are 

typically of low order, and most often are first derivatives. 

Time-marching numerical schemes of solution of continuum motion 

problems must entail the evaluation of terms which tend to the 

partial derivatives appearing in the equations of motion in 

differential form. Schemes which are formally of high accuracy 

(in the sense that the error in the numerical solutions which they 

yield tends to zero as some high power of the mesh spacing) 

actually achieve these rates of convergence only if corresponding 

high-order derivatives are continuous everywhere on the region of 

space-time germane to the flow. Since second derivatives of the 

variables of the motion with respect to space or time coordinates 

generally have infinite discontinuities somewhere on the flow region 

the rate of convergence should not be expected to be as rapid as 

the second power of the mesh spacing parameter. On the other hand, 
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the region of space-time on which the difference equations are 

necessarily a poor approximation to the governing differential 

equations is confined to the neighborhood of isolated surfaces in 

space-time, while the flow takes place throughout a volume of space- 

time. Hence, the error in the solution should be expected to vanish 

at least as rapidly as the first power of the mesh spacing. More 

detailed investigation of the finite difference equations of 

Richtmyer and von Neumann, 8 which are among the simplest and most 

successful of time-marching schemes, has led to the conclusion, 

stated earlier, that the numerical solution error will tend to zero 

as the 3/2 power of the mesh spacing parameter. 4 This law of decay 

has some important economic implications. In one space dimension, 

the time of solution, and hence the cost of a problem, is nearly 

proportional to n2, where n is the number of mesh points represent- 

ing a continuous spatial coordinate. In two dimensions it is 

proportional to n3, and in three dimensions, to n 4 . Hence, if the 

truncation error is proportional to h 312, as it appears to be for 

time-marching schemes employing centered differencing, then to 

cut the solution error by a factor of 2 will increase the cost of 

solution by a factor of 2.5 in one dimension, 4 in two dimensions, 

and 6.3 in three dimensions. If the truncation error is propor- 

tional to h2, which is possible in principle for centered 

differencing of the equations of motion in characteristic 



form, then the factors ar.e 2, 2.8, and 4. 

Genera1 experience in the use of these techniques has shown 

tha,t fo,r one-dimensional flows it is usually ne.cessary to employ 

on the o,rde,r of a few hundred mash points - say 2,OO - to obtain 

quantitatively satisfactory results. It is unlikely that results 

of comparable accuracy will be obtained in'two space dimensions 

unless the square of this number of mesh points is employed, and, 

in three dimensions,the cube of this number; Also, typically, the 

number of time-steps required to complete a problem of motion is 

on the order of a few thousand - say 2000. Thus, in the course 

of a nominal problem, the variables of the motion must be updated 

about lO(200) 
D+l 

times to generate the solution to the problem, 

where D = 1, 2, 3 for motion in one, two, and three spatial dimen- 

sions, respectively. If one considers that the time of solution 

of a problem on a high speed computer should not be greater than 

about 10 hours,, then the computer on which the calculations are 

performed must be capable of updating the variables of one- 

dimensional motion at one space point by one time-step in about 

.045 seconds. Computers which meet this requirement have been 

available for a number of years. For two-dimensional problems, 

an adequate computer would have to update the variables of the 

motion at one space point by one time-step in about 200 micro- 

seconds. Computers approaching this capability have only recently 

10 



become available. In all but a few special cases, three-dimensional 

problems are well beyond the state-of-the-art of pre.sent-day com- 

puter development. 

The problems of interest in this program are two-dimensional, 

and lie at about the limit of the power of 'present computers. It 

is for this reason that the program was essentially a feasibility 

study whose purpose was to determine the accuracy which could be 

realized in the solution of continuum motion problems by time- 

marching methods, using presently available computing machines 

for reasonable lengths of computing time. The 3/2-power decay law 

for the numerical solution error implies that once a good distri- 

bution of mesh points has been found for a given problem, greater 

accuracy can only be had by increasing the mesh point density: as 

the solution error is decreased in this way, the rule also implies 

a rapid increase in the cost of solution. Computing speed appears 

to be the only answer to this law; for the problem-solver whose 

specific continuum motion problem is not of a kind routinely solved, 

the adequacy of available computers for his purpose is likely to 

be decisive with respect to the use of numerical methods for many 

years to come. 

11 



2.0 COMPUTER CODE INPUT .AND OUTPUT FOR THE CALCULATIONS 

2.1 Parameters of the Flow Field Calculations 

Numerical methods for the solution of physical problems 

generally involve two kinds of parameters, namely, physical 

parameters and mathematical parameters. The physical parameters 

characterizing systems of the kind considered in this program 

consist of the Reynolds number, Mach number, heat capacity 

ratio for the gas, and the shape of the rigid obstacle in the 

flow field. The principal mathematical parameters are the 

positions selected for the points of the finite difference mesh 

used to describe the flow - the so-called "zoning" parameters of 

the flow field. The time-step is also variable, within limits 

set by considerations of numerical stability; 8,lO roughly, in 

.these problems, the time-step was so chosen that a sound signal 

would require two time-steps to traverse the shortest distance 

across any zone of the mesh. Other mathematical parameters 

enter the numerical calculation in that numerical results can 

be generated in practice only for a finite flow region, while 

in the first instance the flows of interest here take place in 

an infinite plane field. Thus, a closed curve must be chosen to 

bound the portion of the flow region on which the history of 

the flow is to be calculated; this choice is left to the intuition 

or previous experience of the problem-solver. Finally, the 

precise finite difference representation of the boundary conditions 

12 



used to describe the flow, as well as the finite difference 

equations of motion, are also to a large extent at the discretion 

of the problem-solver - although it would be inaccurate to 

classify them as parameters. A discussion of the boundary 

conditions will be given later in this report. As a guide to 

writing appropriate difference equations, the requirement has 

been imposed that these equations satisfy certain important 

transformation conditions. For example, the differential 

equations for conservation of mass and momentum, taken with the 

first law of thermodynamics, imply a conservation equation for 

the total energy. The difference analogs of the mass, momentum 

and first law equations used in this program rigorously 

imply a difference analog of the total energy equation which is 

also exactly conservative. Moreover, the difference equations 

have been written to satisfy this criterion in a general time 

dependent coordinate system. The finite difference technique, 

and its rationale, are discussed in more detail elsewhere. l-4 

Ideally, only the physical parameters of a problem would 

determine the outcome of a numerical computation, just as only 

these parameters affect what happens in nature. However, 

although practical interest in a numerical method centers on 

its physical parameters, it is necessary also to know how the 

mathematical parameters influence computed output, if the results 

of numerical computation are to be understood. Accordingly, 
13 



much of the work of the program dealt with the influence of 

the mathematical parameters of the numerical method. In fact, 

the numerical work of the program consisted largely of a 

variation of mesh spacing parameters and of the Reynolds number. 

14 



2.2 Input-to the Specific Calculations of the Program 

The obstacle in the flow field was taken in every case 

either as a perfect right circular cylinder or as a slightly 

flattened one. All the calculations were made in a frame of 

reference in which the cylinder was stationary; the positions 

of the mesh points were specified in Cartesian x, y form referred 

to the center of the cylinder as the origin of coordinates. 

In addition, the mesh point positions were held fixed throughout 

any problem. The meshes used here are therefore Eulerian. They 

are also logically rectangular, in the sense that the points of 

any finite difference mesh can be labelled by a pair of integers 

j, k, where x increases as j increases and y increases as k 

increases. However, the points comprising any given mesh are 

not arranged in straight lines, i.e., the mesh points define 

zones which are quadrilaterals, but not necessarily rectangles, 

in the x, y plane. The reason for this is that the obstacle 

itself is not rectangular and most naturally calls for a non- 

rectangular coordinate system to describe the flow field in 

its vicinity. The free stream flow direction was taken to be 

the direction of the y-axis; the x-axis is therefore at right 

angles to the direction of free stream flow. The points for 

which j has its minimum value, and the points for which j is a 

15 



maximum, define two lines of constant x; these lines will be 

called the "lateral boundaries" of the region of calculation of 

the flow. The points for which k has its minimum value lie on 

a line of constant y, called the "upstream boundary" of the flow 

region; the points for which k has its maximum value also define 

a line of constant y, called the "downstream boundary" of the 

region of calculation of the flow. Thus, each flow field was 

calculated on a finite rectangular region of the x, y plane. 

In all the code runs, the diameter of the cylinder was taken 

to be three units of distance, and one of the lateral boundaries 

of the region of calculation of the flow was the line x = 10. The 

other lateral boundary was either the y-axis itself or the line 

x = -10, depending-on the symmetry of the flow field. That is, 

the y-axis was a line of reflective symmetry for the flow field in 

some of our calculations, particularly in the first half of the 

program. A flow begun with perfectly symmetric initial conditions 

and subject to perfectly symmetric boundary conditions maintains 

its symmetry, although such flows are unstable with respect to 

symmetry perturbations and are therefore not observed in nature. 

For such symmetric flows, the flow field need only be calculated 

on one side of the line of symmetry; the amount of computation 

is halved thereby. It was for this case that one of the lateral 

boundaries was the line x = o, while for problems lacking reflective 

16 



symmetry the corresponding lateral boundary was the line x = -10. 

The upstream boundary was the line y = -6.75 in all cases. The 

downstream boundary was taken as the line y = 9, except for the 

last (and 1engthiest)code run, in which the downstream boundary 

was the line y = 15. 

Three different finite difference meshes were used in the 

program. They will subsequently be called "fine", l'medium", 

and "coarse", these terms corresponding to the order of decreasing 

density of mesh points. With the lines x =f 10, y = -6.75 and 

y = 9 bounding the region of calculation of the flow, the fine, 

medium and coarse meshes consisted of logically rectangular arrays 

of 59 x 59, 43 x 48, and 29 x 29 mesh points, respectively, except 

that the centerline of the problem bifurcates to define the 

cylinder. However, the fine mesh was actually used only for the 

case in which the y-axis was a line of reflective symmetry of the 

flow; fine mesh calculations were therefore made only for a grid 

of 30 x 59 mesh points. Figures 1, 2, and 3 show the plane two- 

dimensional arrays of points making up the three meshes. 

In all the work of the program, the air pressure was taken 

as that of a polytropic gas with a heat capacity ratio of 1.4. 

Also, changes in the state of any air mass element were assumed 

to take place adiabatically; owing to the viscous forces repre- 

sented by the deviatoric stresses in a Stokesian fluid, changes 

17 



in the entropy of any mass element are possible in subsonic flow, 

and were allowed to take place in the numerical calculations. A 

Mach number of .2 was used almost exclusively in these calculations 

The only exception is to b.e found in some of our first code runs, 

which employed very coarse finite difference meshes, and were 

carried out for debugging purposes; no further reference will be 

made to these calculations. In all cases the variables of the 

motion at the upstream boundary were given their free stream 

values. A no-slip condition was applied at the surface of the 

obstacle, while a condition of frictionless sliding was imposed 

at the lateral boundaries. The downstream boundary was treated 

in two different ways. Most of our numerical work was done with 

a very crude description of this boundary, in which the variables 

of the motion were assumed to have the same values at the boundary 

itself as at the immediately adjacent interior mesh points and 

zone centers. In our most recent code runs, the downstream 

boundary was handled in a more sophisticated way; as described 

in the next section, the new downstream boundary calculation is 

based on the treatment of streamlines as regions of one-dimensional 

slab flow in the neighborhood of the boundary. 

A stationary cylinder surrounded by air at standard conditions, 

moving uniformly in the direction of the positive y axis at 

Mach .2, comprised the basic set of initial conditions for the 

18 



TABLE I 

PROBLEM REYNOLDS 
NUMBER NUMBER 

SYMMETRIC CASES 

108.2 1000 
110 
112.1 lmoO0 
112.1 1000 
113 10000 

NON-SYMMETRIC CASES 

208 1000 C -10,lO 
208.1 1000 C -10,lO 
209 1000 M -10,lO 
210 
211 1,0000 

C -10,lO 
M -10,lO 

211.1 1000 M -10,lO 
211.2 5000 M -10,lO 
211.4 100 M -10,lO 
211.41 100 M -10,lO 
211.42 100 M -10,lO 
211.6 
213 1;ooo 

M -10,lO 
C -10,lO 

7'; F = fine mesh, M = medium mesh, C = coarse mesh 

Summary of Problems Run 

MESH>? X RANGE Y RANGE TIME STEP NUMBER OF 
CYCLES RUN 

0,lO -6.5,8 .00175 800 
0,lO -6.5,8 .00175 100 
0,lO -6.75,9 .00058333 1200 
0,lO -6.75,9 .00029167 400-600 
OJO -6.5,8 .00175 300 

-6.5,8 .002625 1700 
-6.5,8 .00175 1700 
-6.75,9 .00175 2700 
-6.5,8 .002625 700 
-6.75,9 .00175 loop 
-6.75,9 .00175 600-100~ 
-6.75,9 .00175 1200 
-6.75,9 .00175 950-2100 
-6.75,15 .00175 1900-4100 
-6.75,15 .00175 3900-4300 
-6.75,15 .00175 1197 
-6.5,8 .002625 700 



__ ..-- -- 

calculations of the program. These are "impulsive" initial 

conditions in that relative to the air at (say) the upstream 

boundary, all the air is at rest, while the cylinder has an 

instantaneous speed of Mach .2. Not all flows were actually 

begun in this way; to save computing time some problems were 

initiated with output generated in other problems - but these 

in turn could be traced back to an impulsive start. 

The values of the mathematical parameters and the Reynolds 

number which define each of the problems run in this program are 

given in Table 1. 
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2.3 Output Format and Examples of Plots - - --.. 

Computed results were obtained at first exclusively in the 

form of tables of edited output. For each mesh point or zone 

center (whichever is appropriate) the mesh point coordinates, 

momentum vector, velocity vector, density, specific internal 

energy, stress components and mass were among the variables 

tabulated. As the program progressed, various plots of flow 

field quantities were made, at first by hand, and later on 

standard digital plotters. These plots - particularly plots 

of the velocity field at various instants of time in the course 

of a flow - now constitute the chief mode of display of the 

calculated results. The velocity vectors are shown in the customary 

way as arrows whose length is proportional to their magnitudes. 

In the finite difference scheme employed here, velocity fields 

are computed at mesh points. Accordingly, in the flow field plots 

each mesh point is used as an origin for the velocity vector 

associated with that point. Many such plots have been made in 

the course of the program. Samples of these are given in 

Figures 4 - 8. In these plots, as in all the velocity plots 

shown in this report, the data exhibited is exactly that given 

by the finite difference equations; there has been neither smoothing 

of raw output, nor interpolation in the flow field. The coarse 

and medium meshes were used to describe both flows for which the 
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y-axis is a line of perfect reflective symmetry.and flows for which 

it is not. It can be seen in a general way from the Figures that 

the computed output agrees with the observed patterns of flow for 
11 

these systems. In the fine mesh plots, the development and 

growth of one of the two perfectly symmetrical vortices at the 

back side of the cylinder is clearly shown, as is the motion 

of the point of separation of the flow from the backside of the 

cylinder to a position near its middle. In this case, with 

a Reynolds number of 1000, the number and distribution of mesh 

points were chosen largely to provide boundary layer detail. 

With a Reynolds number of 1000 the boundary layer is about three 

zones thick for the fine mesh, whereas it lies entirely within 

the one zone adjacent to the obstacle for the medium sized mesh, 

and in a fraction of this zone for the coarse mesh. It is 

interesting, and perhaps of practical importance, that it does 

not appear necessary to describe the details of boundary layer 

motion in order to obtain a picture of the flow which is at least 

qualitatively correct. A complete set of flow field plots generated 

in the program is in the possession of Marshall Space Flight 

Center personnel. 
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3.0 RESULTS OBTAINED IN THE PROGRAM 

3.1 Principal Classes of Results 

The main results of the program lie in four areas. With 

regard to the numerical method and its application, important 

information has been obtained concerning the effects of different 

choices of a finite difference mesh on the numerical output 

computed for problems of this kind; also, for the difficult 

subsonic case, a method has been developed for the treatment of 

boundaries which is physically reasonable in principle, which 

has now given physically reasonable output in practice, and which 

is capable of further refinement and generalization. Finally, 

two important comparisons have been made with experimental data; 

quantitative agreement has been achieved which is as close as 

one might hope to reach in this early stage of the application 

of the numerical method. One such comparison has to do with the 

frequency of shedding of vortices and with the transition to 

turbulence with increasing Reynolds number, while the other concerns 

the pressure on the downstream side of the cylinder and the mechanism 

of turbulent flow field formation. On the last point, the calcula- 

tions predict pressure oscillations in the neighborhood of the 

cylinder which, if their physical reality is upheld in future 

studies, are a flow phenomenon not previously calculated 

theoretically, and perhaps connected in an essential way with 

the occurrence of a turbulent wake as opposed to a vortex street. 
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3.2 Mesh Point Density~ Variations 

The effect of the mesh point density on the numerical 

solutions is evident in Figures 6 - 8 which show the velocity 

field near the downstream side of the cylinder all at the same 

early, transient stage of formation of the initial vortex in 

a symmetrical flow field at a Reynolds number of 1000. The 

formation of vortices is apparent in all three cases. However, 

it is also apparent from Figures 6 - 8 that the vortices obtained 

with the coarse mesh diffuse rapidly relative to the other two 

meshes. The results for the medium mesh show vortex growth as 

a smoothly continuous transformation of the velocity field. With 

the further definition afforded by the fine mesh, whirlpools and 

eddies can be seen on regions small compared to that occupied by 

the main vortex. It appears that similar phenomena occur in real 

physical flows. 12 

The average density of mesh points in the medium mesh is 

slightly more than twice that in the coarse mesh, while the fine 

mesh contains about four times as many points per unit area as 

the coarse mesh. In the neighborhood of the cylinder these 

ratios have deliberately been made somewhat larger to afford 

greater relative definition of the boundary layer in passing from 

the coarse, to the medium, to the fine mesh. By comparison with 

pictures taken experimentally for similar physical conditions, 11 
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it is apparent that one cannot expect to obtain more than quali- 

tative information from meshes whose point density is similar to 

that of our coarse mesh. For the medium and fine meshes it appears 

from these results that the numerical solutions will be quantitively 

useful. The inadequacy of the coarse mesh is pointed up even more 

strongly by Figures.9 - 14 which show the velocity field calculated 

with the coarse mesh, and with the medium mesh, respectively, for a 

Reynolds number of 100. In both cases the fields are shown a short 

time after the shedding of the first vortex. In the case of the 

coarse mesh, the detached vortex has already diffused to the point 

where it is no longer clearly discernible as a whirlpool, but 

appears rather as a region of rapid change of the velocity field. 

On the other hand, Figure 14 for the medium mesh shows a well- 

defined vortex, detached from the cylinder and travelling down- 

stream with its integrity essentially unimpaired. 
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3.3 Upstream and Downstream Boundary Conditions 

In all the work of the program, the density and velocity of 

material at the upstream boundary, and the internal energy density 

there, were given their free stream values. The downstream 

boundary conditions used in all the problems except the last 

amount.essentially to the assumption that the velocity, density 

and internal energy density fields do not vary with position in 

the neighborhood of this boundary. While this might be an adequate 

assumption far downstream, it amounts to a non-physical constraint 

on the flow, news of which travels upstream under these subsonic 

conditions and eventually seriously interferes with the flow 

field (see Figures 15,16). This strong non-physical perturbation 

was tolerated until late in the program since most of our studies 

required only the calculation of flow fields in their transient 

early stages, before the downstream boundary could communicate 

with the cylindrical obstacle. About all that is required of a 

boundary calculation for this purpose is numerical stability; 

spurious signals generated at the boundary cannot influence the 

flow early in the process of vortex formation. However, when it 

became necessary to approach the periodic state as a limit of the 

transient flow, it was evident on the basis of results like those 

of Figure 16 that the downstream boundary conditions would have to 

be improved. The crude boundary conditions first used were replaced 

by a calculation based on two principal assumptions, namely, 
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that each streamline of the flow field in the neighborhood of 

the boundary at any instant of time constitutes a region of 

transient isentropic one-dimensional slab flow, and that the sound 

speed has its free stream value at the downstream boundary. The 

variables of the motion can then be calculated at the boundary 

as follows. 

First, knowing the velocity field at an instant of time, 

the position of any particle can be updated by one time-step 

from an "earlier time" to a "later time". In particular, a 

particle position can be found at the earlier time such that 

one time-step later the particle will arrive at a given boundary 

mesh point. For this purpose the discrete velocity field is 

assumed constant during the time-step and is made spatially 

continuous by interpolation; we interpolated linearly. Thus, 

one can calculate the direction of the streamline along which 

that particle travels which arrives at the given boundary point 

at the later time. Assuming that sound signals travel along the 

streamline as in one-dimensional slab flow, it is also possible 

to calculate from the known earlier-time flow field both the 

particle velocity and the sound speed at that point from which a 

sound signal would have had to depart at the earlier time in order 

to reach the boundary point at the later time. Thus a Riemann 

invariant can be defined on the streamline, and its value at the 

27 



II 11.1-IIII.Im 1.11111 111-.-I-B I, 11.1, ,,..,,,,,. 111.1 I., 1.1-1. . -mm mm.. P ,,,, -, .--.--..- .- .--- -. -_ . . 

I 

boundary point at the later time can be calculated directly from  

the particle velocity and sound speed (just found from  the known 

earlier-tim e flow field), and the assum ption of isentropic flow. 

Then, taking the sound speed at the boundary at its prescribed 

constant free stream  value, the particle speed can readily be 

com puted at the boundary point at the later tim e. The direction 

of flow is assum ed to be that of the stream line. Hence, the 

particle velocity can be found as a com plete vector quantity. 

M ass and internal energy are then transported across the down- 

stream  boundary at the densities characteristic of the interior 

of each zone adjacent to the boundary. 

A m ong the gross assum ptions involved in this calculation is 

that of local one-dim ensional slab flow. One important source 

of error in this assum ption is its neglect of the contribution 

to the velocity divergence arising from  the spreading of the 

stream lines. This error can be corrected with little difficulty. 

A  m ore fundam ental objection to the calculation is that, strictly 

speaking, sim ultaneously to impose our downstream  and upstream  

boundary conditions is at best redundant, and is otherwise in- 

consistent with the equations of m otion. In supersonic flow, the 

flow variables have values at the downstream  boundary which are 

not independent of those prescribed at the upstream  boundary. 

Rather, given the initial conditions of the flow, the flow 

variables downstream  are determ ined by our upstream  boundary 
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values and the equations of motion. All the information 

needed to update the variables of the motion on the downstream 

boundary is transmitted on sound signals and particle paths from 

upstream, and.eventually from the upstream boundary alone. 

(The shock which appears in the supersonic case could be taken 

into account by a generalization of the artificial viscosity 

method of Richtmyer and von Neumann. 8s13.) Similar statements 

hold (but with no shock) for the subsonic case of interest in 

this program, except that one or more of the upstream boundary 

conditions could, in principle, be left unspecified while 

equivalent conditions are prescribed at the downstream boundary; 

subsonic flow differs from supersonic flow in that news of 

conditions at the downstream boundary can propagate on sound 

signals to the upstream boundary. In our latest treatment of 

the downstream boundary (described above) a rough calculation is 

made of one piece of data carried by sound signals from upstream; 

although it has been defined artificially for two-dimensional 

transient flows, the "Riemann invariant" plays this role in our 

boundary calculation. The additional specification of the sound 

speed and the assumption of local isentropic flow overdetermine 

the motion. The isentropic condition is a convenience which 

could be done without, in which case the sound speed prescribed 

at the downstream boundary would still be inconsistent 
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with the equations of motion unless it were given precisely the 

values occurring in the flow. Of course, if this information 

were available, the problem would quite likely already have been 

solved. If the signals running from boundary to boundary were 

properly taken into account, it would be unnecessary to prescribe 

the sound speed at the downstream boundary. On the other hand, 

to follow these signals would be extremely difficult in a time- 

marching scheme of solution of the equations of motion. Thus, 

for practical reasons, we have chosen to employ boundary conditions 

which are improper in principle. 

The justification for our present boundary calculation lies 

in the fact that the free stream sound speed is often a good 

approximation to the sound speed along the downstream boundary. 

For Mach numbers much less than unity, the sound speed varies 

very little with position in comparison with the other variables 

of the motion such as velocity. Just as in the case of our 

first crude boundary calculation, the assumption that the sound 

speed takes its free stream value at the downstream boundary is 

accurate sufficiently far downstream. (The calculation is not 

exact in this limit unless the Mach number is infinitesimal, 

owing to viscous heating of the gas particles in the wake of the 

cylinder, and the assumption of adiabatic changes of state.) 

In the present case, however, "sufficiently far" is almost 

certainly closer to the obstacle than for the boundary conditions 
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first used. The philosophy underlying the present boundary 

calculation is simply that, subject to the requirements that the 

calculation be stable, and that it lead to accurate results if 

applied "sufficiently far downstream", "sufficiently far downst,ream17 

should be as far upstream as possible in order to save computing 

time. In our present calculation the troublesome case is that 

of subsonic flow; for supersonic flow the spurious signals 

created by a poor downstream boundary calculation never propagate 

back into the flow field, while on the upstream side the variables 

can rigorously be given their free stream values. 

The imposition of the free stream values of the flow variables 

along an upstream boundary at a finite distance from the cylinder 

defines an unconventional, somewhat artificial, but quite possible, 

subsonic flow problem. Of course, the farther this boundary is 

placed upstream, the more closely the problem so posed will 

coincide with the usual one in which the free stream boundary 

conditions are specified at infinity. Again, just as for the 

downstream boundary, the upstream boundary has been placed close 

to the cylinder in order to conserve computing time, but (hopefully) 

not so close as to create a much different flow than if the 

boundary were far upstream. 

The assumptions of the present treatment of boundaries 

become more and more exact as the Mach number is reduced to zero, 
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and are entirely consistent with the equations of motion for Mach 

numbers greater than one. A test of this boundary calculation 

was therefore felt to be desirable. 

Velocity fields computed with the two boundary conditions 

are shown in Figures 16 and 17. The medium mesh and a Reynolds 

number of 1000 were used in these calculations. The velocity 

field of Figure 16 represents a later stage of the flow of 

Figure 15, which in turn developed from impulsive initial 

conditions. The flow field corresponding to Figure 17 was also 

calculated from that represented by Figure 15; in this case the 

Figure 15 flow field was used as initial-time data and the 

problem was continued with the new downstream boundary equations. 

The velocity field of Figure 16, which exhibits zone-by-zone 

oscillations in both direction and amplitude, has been appreciably 

smoothed in Figure 17, although zone-by-zone amplitude fluctuations 

are seen; it is felt that these fluctuations reflect the velocity 

variations of the "initial-time" data corresponding to Figure 15, 

although this point has not been checked. At present, the most 

convincing evidence of the soundness of the new boundary calculation 

is contained in Figures 18 - 37. While the diffusion of vortices 

with the new boundary equations is still seen to be serious near 

the downstream boundary, the diffuse region shows no tendency 

to propagate upstream; evidently neither the vortex shedding 
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process nor the vortex street have been interfered with after 

thousands of time-steps, during which many sound signals have 

traversed the region between the boundaries. Such diffusion 

as may be observed is probably due more to the coarseness of the 

mesh near the downstream boundary than to errors inherent in the 

boundary calculation. 
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3.4 Vortex Street Formation 

The downstream boundary condition just discussed was used 

only in the problem which has a Reynolds number of 100. This 

problem was begun with the values of the flow field variables 

found for a Reynolds number of 10,000 after 600 time-steps of 

computation. At this point, the Reynolds number was changed to 

100 and the calculation was continued with no other changes for 

1290 more time steps. Instead of being perfectly circular, the 

cylinder cross section in this problem was a circle slightly 

flattened in the neighborhood of a point opposite one of the 

lateral boundaries of the problem; i.e., the cylinder cross 

section was circular except for a small segment consisting of 

a straight line parallel to the free stream flow direction. 

This deformation was accomplished simply by setting the x-coordinate 

of one of the two cylinder boundary points on the line y = o 

equal to the x-coordinate of the two adjacent points on the 

cylinder boundary. The system was thereby deliberately rendered 

unsymmetrical to a slight degree - but much more than would be 

the result of the careful.machining of a cylinder a few centimeters 

in diameter. The purpose of introducing asymmetry into the problem 

was to bring about the shedding of vortices with the consequent 

growth of a vortex street, in keeping with the results of 

experimental observation. After 1290 cycles, the velocity field 
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plots showed vortices on either side of the y-axis which were 

perceptibly different from mutual mirror images. However, their 

asymmetry fell far short of that associated with imminent vortex 

shedding, even though 1290 time-steps is longer than the observed 

time between the shedding of two vortices for this Reynolds 

number 14 and long enough for a sound signal to move three times 

the distance between the upstream and downstream boundaries. It 

was therefore decided to go back 390 time-step.s and introduce a 

much stronger symmetry perturbation into the problem by setting the 

particle velocity equal to zero at each of a group of mesh points 

near the flattened portion of the cylinder on its downstream side, 

before running the problem further. The velocities at these points 

were computed thereafter according to the equations of motion; 

they were not forced to remain zero. This asymmetric disturbance 

of the flow field proved sufficient to initiate the shedding of 

vortices, the first of which detached itself from the side of the 

cylinder opposite to that on which the perturbation was introduced. 

Figures 18 - 37 show the velocity field in increasing time sequence, 

from its impulsive start with a Reynolds number of 10,000, to the 

almost streamlined velocity field which soon develops from the 

initial field as the flow adjusts itself to the presence of the 

cylinder, to earlier and later stages of the almost symmetrical 

growth of the first vortices formed behind the cylinder after 

the Reynolds number was changed to 100, through the shedding of 

several vortices at various times after the small group of 
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particle velocities was set to zero in order to create a major 

asymmetry in the flow field. In all, the calculation was carried 

through the shedding of five vortices; 4900 time-steps were taken 

in the course of the calculation at a rate of about 25 minutes per 

hundred time-step-s on the CDC 3600 (and slightly longer on an 

IBM 7094 11). 

After many vortices have been shed, the experimentally 

observed result of the shedding process is a periodic flow field 

in which a vortex detaches itself first from one side of the 

cylinder, then from the other side, and so on. The computer code 

output was examined closely in the interval following the formation 

of the next-to-last vortex shed; in this way an estimate of the 

period of the flow was obtained, which was as free as possible 

of the transients introduced by the initial conditions of the 

problem. The velocity field plots were inspected to determine 

when the center of each of the last two vortices shed coincided 

with a particular value of the y-coordinate. This was done for 

two different values of y, namely, y = 4.0 and y = 7.0. By 

doubling the difference between the arrival times of successive 

vortices at a given value of y, an approximation to the flow 

period was obtained from the numerical results. Making use of 

the numerical values assigned to the relevant parameters of the 

system, this period was converted to a dimensionless flow field 
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frequency known as the Strouhal number. The two values obtained 

in this way from the data taken at the two y-positions are 0.16 

and 0.18. For a Reynolds number of 100 the experimental value 

of the Strouhal number is 0.17. This is perhaps the most 

significant quantitative check which we have made of the validity 

of the numerical data generated in the program. The fact that 

the periods estimated at y = 4.0 and y = 7.0 are not the same 

may be due to errors in determining from the velocity plots 

(which were made at intervals of 100 time-steps) just when the eye 

of a vortex lies on a given line of constant y; or it may be 

evidence of numerical solution errors, particularly those stemming 

from the boundaries; or the flow may actually not yet have become 

periodic. In any case the two periods are not much different. 

Another, and cruder, check on our results lies in the fact 

that the calculations for a Reynolds number of 5000 predict a 

flow field free of vortices (see Figure 38). It cannot be claimed 

that a turbulent wake has been calculated in this case, but the 

code has clearly predicted that vortices will form at a Reynolds 

number of 1000, and not at 5000. Experimentally, it has been 

found that a transition from vortex streets to turbulent wakes 

takes place in this range of Reynolds numbers. 7 

$ The Strouhal number 15 is defined as S = nD/v; where n is the 
shedding frequency; v the free stream velocity; and D a character- 
istic dimension of the body, e.g., the diameter of the cylinder. 
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3.5 Pressures, Pressure Fluctuations, and the Transition to 
Turbulence 

Experimental measurements of the pressure at various points 

on the cross.-section of a right circular cylinder are available at 

several instants of time in the early stages of impulsively 
16 

initiated motion. These pressure values are compared in 

Figure 39 with the results of our medium mesh calculations for 

a Reynolds number of 1000. The shapes of the experimental and 

theoretical curves are generally similar. The extent of agreement 

between the two suggests that useful estimates of the stress on 

an obstacle in the flow field can be obtained for flows of this 

kind without further refining the mesh. However, when the fine 

mesh was used, it was found that the computed and experimental 

results did not agree as well as with the medium mesh (see 

Figure 40). Zone-by-zone pressure oscillations appear which are 

of appreciable amplitude, so that even though the mean pressure 

over a few zones has a value close to that given by experiment, 

the detailed picture is not adequate for quantitative purposes. 

Of particular concern is the fact that signals of high frequency 

(either in space or time) predicted by finite difference calculations, 

are often quirks of the numerical method with no physical signifi- 

cance. It was therefore natural to ask whether corresponding 

fluctuations took place time-step by time-step, or at most over 

the course of a few time-steps. Accordingly, the computed values 

38 



of the pressure were plotted as a function of the time-step for 

each of four contiguous zones adjacent to the cylinder at the 

downstream-most part of its surface. The results shown in 

Figure 41 indicate a smooth variation of the pressure with time 

which, while not periodic, is nearly so for each zone. All the 

curves are similar in this respect, but are clearly out of phase 

(as noted in Section l.O>, and the result at an instant of time 

approaches spatial randomness. A mean period of about one hundred 

time-steps can be assigned to these curves, which is much longer 

than the time required for a sound signal to traverse the zones 

in this region of the flow, and is also much longer than the 

time required for a particle in the free stream to move a 

distance comparable to the zone width. Since the pressure 

oscillations have a mean period of many time-steps, and this 

period has no apparent correlation with signal or particle 

transit times across zones of the finite difference mesh, the 

conclusion reached tentatively here is that these fluctuations 

are physical, and not mathematical, in origin. It has been 

postulated 17 that vortices include small-scale turbulent motion 

whose amplitude increases with Reynolds number to the point 

where the turbulence is so severe that smooth flow cannot take 

place on a scale large enough for vortex formation. It is 

possible that the 

of such turbulent 

pressure fluctuations observed here are evidence 

motion. 
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4.0 RECOMMENDATIONS AND CONCLUSIONS 

4.1 Right Circular Cylinders, Perfect and--Perturbed 

In this program a first attempt has been made to apply our 

specific finite difference techniques and the computer codes 

based on them to the flow of a compressible viscous fluid 

around an obstacle. While the results obtained have been 

encouraging, they represent little more than a start on the use 

of these numerical methods to help explain the mechanisms involved 

in vortex and turbulent wake formation; with regard to the 

exploitation of the technique in all its fields of application, 

or even in aerodynamic applications alone, the problems solved 

here are a minute beginning. More extensive investigations 

need to be made of the mathematical aspects of the method, i.e., 

the role of its mathematical parameters, as well as of the 

effects of the variation of physical parameters in specific 

practical applications. In addition, even the small amount of 

work reported here has pointed out a need for new experimental 

work. The number of experiments suggested by the results of 

numerical computations like these is almost certain to grow 

rapidly as the range of application of the technique is widened. 

A more complete check of the flow fields predicted by the 

computer code is presently the most important task to be performed 

in connection with our flow field calculations. Many more such 
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checks can be made even for the circular cylinder problems studied 

here. Code runs like that described in Section 3.0 for a 

Reynolds number of 100 should be made for other Reynolds numbers, 

and a curve of Strouhal number vs. Reynolds number should be 

prepared from the results of these calculations for comparison 

with the experimental curve already available. 14 The expense 

involved in generating the individual points of this curve might 

be considerably reduced over that incurred in this program for 

the single point at a Reynolds number of 100, by incrementing 

the Reynolds number in small steps. If the output generated for 

one Reynolds number is used as initial time data for a slightly 

different Reynolds number, then the flow field may adjust itself 

relatively quickly to the new Reynolds number, and it may only 

be necessary to compute the flow through the shedding of two or 

three vortices. 

Another form of experimental data available for quantitative 

comparison with code output consists of photographs of flow fields 

showing streaks created by the extrusion of dye into the fluid 

from various points on the cylinder. 18 To produce corresponding 

output from the computer codes would require the programming 

of a special service routine for processing the primary code 

output; no modification of the code itself would be necessary. 

Along these lines, our plot routine could be changed slightly to 

generate the instantaneous streamlines of a flow field. 
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A further kind of quantitative check between the computed 

and experimental data lies in.2 comparison of pressures at 

various points in the flow field. Great care needs to be 

exercised in making this comparison owing to the high-frequency 

pressure fluctuations predicted by the computer code. A space- 

time average of the pressure, corresponding to the detailed 

experimental conditions, would probably be the proper quantity 

to compare with experimental data. 

A number of other problems of viscous compressible flow 

around a right circular cylinder, whose solution would be of 

widespread interest, come to mind. For example, the computer 

code could be used to predict more closely a critical Reynolds 

number associated with the transition from vortex formation to 

turbulence. In the same vein, calculations like those reported 

here could be carried out to account for the critical Reynolds 

number (R = 40) associated with the transition between vortex 

street flows and flows characterized by standing vortices. Such 

a study would involve the variation of the Reynolds number over 

a very small range relative to that used in this program. The 

code output provides detail which could be of help in understanding 

the processes involved in these transitions. It might also be 

possible to determine whether truly "critical" Reynolds numbers real1 
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exist, and how blurred these might become under the influence 

of various disturbances. Such data could be useful in designing 

experiments for the study of transitional flow phenomena. More 

generally, the influence of perturbations of different kinds on 

the outcome of flow field experiments could be helpful in explaining 

discrepancies in observed experimental data. 

With regard to perturbations, an experiment is suggested by 

a result noted earlier (Section 3-o), namely, that the symmetry 

of the flow field must be grossly perturbed in order to induce 

vortex shedding; a slight - but definitely macroscopic - flattening 

of one side of the cylinder resulted in a very slow growth of 

asymmetry. Thus, taking pains to insure the symmetry of initial 

and boundary conditions, it might be possible to design an experiment 

whose outcome would be the growth of vortices in which circulation 

is accumulated without shedding for a time interval much longer 

than the normal shedding period. This kind of vortex growth 

should probably be confirmed first by more detailed calculations. 

If experimental data then agree with the computed results, basic 

information will have been.obtained on the stability of vortex 

flows. If not, it would be natural to ask by what mechanism 

symmetry is destroyed; the answer would then appear to be basic 

to an understanding of vortex growth and shedding under transient 

(i.e., non-periodic) conditions. 
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Next, other flow parameters than the Reynolds number could 

be varied, and particularly the Mach number. A study of the 

effect of this parameter over a,range which includes exactly sonic 

upstream boundary values could be made with no significant changes 

in the present computer program. For such a study it might be 

desirable to consider more realistic behavior of the pressure 

than that of a polytropic gas. Since the calculation of the 

stress takes place in one subroutine of the computer program, a 

more complicated equation of state for air (or an entire consti- 

tutive equation) could be introduced into the calculations by re- 

programming this single subroutine. 

An increased understanding of the mechanisms controlling 

the main features of the flows calculated in the program might be 

obtained by examining more carefully than has been possible up 

to now the numerical results already at hand. Each code calcula- 

tion can be looked upon as a computer experiment, and in fact is 

in some ways more closely related to a physical experiment than 

to a conventional theoretical calculation of flow phenomena. 

Actually, the code runs have the advantage of offering much more 

detailed flow field information than do actual physical experiments. 

A careful, thorough study of the voluminous output generated in 

this program might, for example, lead to the ~~empirical~7 discovery 

of a relation between the vortex shedding frequency and other 

parameters of the system. 
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4.2 Pressure Fluctuations; Everywhere- Discontinuous Flow Fields 

With respect to increased physical insight, perhaps the most 

interesting new application of the finite difference technique 

lies in the study of the pressure fluctuations described in 

Sections 1.0 and 4.0. It appears highly desirable to find out 

whether or not these fluctuations are physically real. This 

could be done by repeating the calculations with more and more 

refined finite difference meshes. Several separate code runs 

should be made, up to the limit of reasonable cost on existing 

computers. The most advanced computers now available make 

practical the use of at least eight times as many mesh points as 

there were in the medium mesh of this program. Plots of pressure 

vs. time similar to Figure 40 could then be made, and the 

characteristics of these curves - particularly the amplitude of 

the pressure fluctuations - studied as a function of the mesh 

point density. If the pressure fluctuation amplitude shows no 

systematic tendency to decrease as the mesh point density is 

increased, then the physical reality of these fluctuations will 

have been established, to the extent that it is possible to do so 

by our finite difference methods. At this point it would be 

necessary to appeal to experiment either to verify or deny the 

code predictions. Hot wire probes might be used in these 

experiments, but the experimental apparatus would have to be 
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designed to operate at frequencies of at least 50 kilocycles, 

which is considerably higher than usual. 

The study of pressure fluctuations has another aspect of 

great potential significance to the theoretical treatment of 

viscous flow. It has been noted that these fluctuations vary 

smoothly with time, but (within the limits of resolution of our 

finite difference mesh) they appear to vary very rapidly with 

spatial position. The implications of similar behavior for finer 

and finer finite difference meshes would be weighty. In that 

case, the numerical technique would have predicted a pressure 

field varying continuously in time, but with no spatial continuity 

at all. The possibility of everywhere discontinuous solutions 

of the flow equations, or of solutions with everywhere discontinuous 

low-order derivatives, has been mentioned before." If these 

are indeed the kinds of flow fields implied by the underlying 

principles of motion for viscous compressible media, then the 

representation of these principles as differential equations is 

not valid for these flows. More general integral statements of 

the governing principles of continuum mechanics would have to 

be used as their mathematical form.2 Finite difference techniques 

which, like those employed here, make no continuity assumptions 

for the flow variables other than Riemann integrability, and which 

are direct finite difference expressions of the laws of motion in 
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integral form, could reasonably be expected to predict correctly 

such flow fields. It is difficult even in principle to see how 

these fields could be calculated by classical analytical techniques 

based on the differential equations of motion (as they almqst 

always are), if the spatial derivatives appearing in these 

equations do not exist. Finite difference methods based on the 

"differencing 17 of the differential equations of motion may be 

similarly limited. Thus, the further study of the pressure fluc- 

tuations noted here would appear to be very worthwhile from both 

the physical and mathematical points of view. 
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4.3 Airfoils; More General Plane-Symmet.ric.~Systems and-Boundary 
Conditions 

The variety of systems which can be treated by the methods 

employed in this program is very wide; only a few such systems 

will be cited now. First, it would be straightforward to calculate 

specific flow fields for right cylinders which are not of circular 

cross section. In fact, to the extent that airfoil flows can be 

described as two-dimensional plane-symmetric problems, the 

automation of airfoil design is a distinct possibility. To 

determine the density and distribution of mesh points required 

for this purpose, calculations of lift and drag could be made 

for several of the large number of airfoils for which lift and 

drag have been measured experimentally. A comparison of the 

c,omputed and observed results would also serve as a further check 

on the general validity of the numerical method. The automation 

of airfoil design could then be brought about by using the entire 

present computer program as a subroutine in a larger program 

which systematically varies any desired design parameters and 

optimizes the airfoil with respect to some predetermined criterion. 

The optimization procedure could be given almost any useful degree 

of complexity, in view of the amount of computation required to 

predict a single flow field. Again, to reduce the length of time 

required for each flow calculation, advantage might be taken of 
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the fact that the successive flows of an optimization process 

wou1.d d.iffer by small variations in the design parameters. 

The calculations made here could be extended to systems 

containing more than one cylinder, circular or otherwise, and 

ultimately to periodic arrays of cylinders. Subject to the 

limitations of computing cost, mutual interaction effects in 

such systems could be predicted numerically. It is perhaps 

more practical at the present time to apply the computer code 

to the flow of a viscous compressible medium around a rotating 

cylinder, or a cylinder undergoing periodic radial oscillations. 

More generally, the code could be modified to include almost 

any prescribed motion of the cylindrical surface and almost any 

frictional condition at that surface from a no-slip law to free 

sliding. In this connection, time-varying boundary conditions 

could be imposed at any boundary in the system. Thus, for 

example, flow fields might be calculated in the neighborhood of 

a cylinder exposed to gusts or periodic blasts of air. Another 

kind of physical effect which could be taken into account is 

that of a difference in temperature between the cylinder and the 

fluid in contact with it. The finite difference equations and 

the computer code would have to be modified in this case to 

include the transport of energy by thermal conduction. 

49 



4.4 Scope of the Numerical Method; Other Geometries,-ConstFtutive 
Equations and Coordinate Systems 

The method used to develop the finite difference equations 

on which the calculations of this program were based applies 

in principle to the entire range of continuum mechanical 
l-4 

phenomena. The computer codes embodying the difference 

equations were written with the explicit intention of achieving 

this generality in practice. Finite difference equations have 

been developed not only for the two-dimensional plane-symmetric 

case, but for the linear, cylindrical and spherical one-dimensional 

motions of an isotropic medium, for two-dimensional motion 

with axial symmetry, and for general transient motion in three 

space dimensions. The difference equations involved form a 

hierarchy in which, within the limits of geometric possibility, 

the equations of higher spatial dimensionality reduce to those 

of lower dimensionality when appropriate symmetry assumptions 

are made. Moreover, they take into account general stresses 

and strains. Corresponding computer codes have now been written 

for the three cases of one-dimensional motion, as well as for 

plane symmetric two-dimensional motion. A computer program is 

currently under development for the treatment of axially symmetric 

two-dimensional systems, as the second phase of an Air Force 

program whose goal is the theoretical prediction of the ground 
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motion resulting from a nuclear explosion. In fact, the plane 

two-dimensional computer code used here was developed in the 

first phase of the Air Force program as an aid in the study of 

our method of constructing finite difference equations, prior to 

work on the axially symmetric case. The code for axisymmetric 

motion is expected to be completed soon. It will be used 

(among other things) for further calculations of viscous compressible 

fluid flow, as part of an extension of the program described in 

this report. An obvious application for this computer code is 

to the motion of a variety of axially symmetric objects in the 

atmosphere. It is expected that the code will be capable of 

predicting the drag on cones and other axisymmetric bodies as 

a function of Reynolds number, Mach number, and the shape parameters 

of the body. It is worth noting that in either the plane or 

axisymmetric cases, the finite difference equations are sufficiently 

general to permit a description of the obstacle as an object with 

a constitutive equation of its own, and to allow the obstacle 

to deform under the action of the surrounding medium. If the 

obstacle has a much higher sound speed than the medium around it, 

a difficult practical problem might arise in that, for reasons 

of numerical stability, the flow calculation would require an 

enormous number of time-steps to cover a time interval significant 
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to the development of the flow field around the obstacle. In 

such cases it might be practical to treat the body first as rigid, 

making a flow field calculation like those of this program. The 

forces on the rigid obstacle could then be imposed as boundary 

conditions which give rise to motion in the obstacle. Next, 

the resulting obstacle boundary motion might be used as a boundary 

condition for another calculation of the surrounding flow field, 

thus generating new forces on the surface of the obstacle, etc. 

It is worth commenting on one further aspect of the 

generality of the finite difference equation used here, namely, 

that these equations have been written in an arbitrary time 

dependent coordinate system. Thus, the possibility of using a 

spatial mesh which deforms in some prescribed manner as a flow 

progresses, was deliberately taken into account in the original 

formulation of the equations of motion. In the work of this 

program, it was natural to use an Eulerian coordinate system; 

the generality of the equations with respect to coordinate systems 

was helpful in this program only in that it readily permitted 

the use of an Eulerian coordinate system which was not Cartesian. 

For supersonic flows, and perhaps others, it might be desirable 

to have special surfaces in the flow field, such as shock fronts, 

as coordinate surfaces. More generally, it is reasonable to 

expect greater accuracy in the solution obtained with a given 
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number of mesh points if the density of points is allowed to adjust 

itself to the instantaneous conditions of a flow; then the mesh 

point density will automatically become greatest where the need 

for spatial definition is greatest. Considerable progress has 

already been made in the definition of such coordinate systems. 

Its most important application in aerodynamics is probably to 

atmospheric motion, where phenomena of great importance can occur 

on vastly different scales of distance and time. 

It has been a hopeful sign of the validity of our 

approach to the construction of finite difference equations, that 

a computer code intended to describe the motion of earth materials 

can yield quantitatively useful results for viscous compressible 

fluid flows. The general continuum motion equations are independent 

of the properties of the media to which they may be applied in 

specific cases. It is our feeling that this should also be true 

of any finite difference equations for continuum motion, not only 

in the obvious sense that the calculation of stress should be 

cleanly separated from the calculation of the other variables of 

the motion., but also in the sense that the finite difference equations 

should work about as well for one material as for another. The 

finite difference equations used here have met this test well for 

Stokesian fluids and for solids. The extent to which this state of 

affairs will obtain for other materials of physical interest remains 

to be seen. 
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Fig. 1. Coarse Mesh (29 x 29) 
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Fig. 2. Medium Mesh (43 x 48) 
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Fig. 4. Problem No. 112.1, R = 1000, 
Fine Mesh; Free stream particles have 
moved 0.529 cylinder diameters. 
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Fig. 5. Problem No. 112.1, R = 1000, 
Fine Mesh; Free stream particles have 
moved 0.795 cylinder diameters. 
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Fig. 6. Problem No. 112.1, R * 1000, 
Fine Mesh; Free stream particles have 
moved 1.25 cylinder diameters. 
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Fig. 7. Problem No. 211.3, R = 1000, 
Medium Mesh; Free stream particles have 
moved 1.19 cylinder diameters. 
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Fig. 8. Problem No. 208.3, R = 1000, 
Coarse Mesh; Free stream particles 
have moved 1.19 cylinder diameters. 
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Fig. 9. Problem No. 208.3, R = 100, 
Coarse Mesh; Free stream particles 
have moved 0.395 cylinder diameters. 
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Fig. 10. Problem No. 208.3, R = 100, 
Coarse Mesh:  Free stream particles 
have moved 1.19 cylinder diameters. 
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Fig. 11. Problem No. 208.3, R = 100, 
Coarse Mesh,  Free stream particles 
have moved 2.37 cylinder diameters. 
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Fig. 12. Problem No. 211.41, R = 100, 
Medium Mesh; Free stream particles 
have moved 0.4 cylinder diameters. 
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Fig. 13. Problem No. 211.41, R = 100, 
Medium Mesh, Free stream particles 
have moved 1.2 cylinder diameters. 
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Fig. 14. Problem No. 211.41, R = 100, 
Medium Mesh; Free stream particles 
have moved 2.4 cylinder diameters. 

Fig. 15. Probl.em No. 209, R = 1000, 
Medium Mesh; Free stream particles 
have moved 7.17 cylinder diameters; 
A non-physical signal arising from 
the crude boundary calculation has 
moved from the downstream boundary to 
about 2.11 cylinder diameters from 
the center of the cylinder. 
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Fig. 16. Problem No. 209, R = 1000, 
Medium Mesh; Free stream particles 
have moved 7.95 cylinder diameters; 
a non-physical signal arising from 
the crude boundary calculation has 
moved from the downstream boundary 
to about 1.9 cylinder diameters 
from the center of the cylinder. 

Fig. 17. Problem No. 209, R = 1000, 
Medium Mesh; Free stream particles 
have moved 7.95 cylinder diameters. 
This problem was restarted from the 
configuration of Figure 15 and run 
with the new boundary condition. 
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Fig. 18. Problem No. 211.3, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have moved 0.0 
cylinder diameters. 
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Fig. 19. Problem No. 211.3, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have moved 0.397 
cylinder diameters. 
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Fig. 20. Problem No. 211.3, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have moved 1.19 
cylinder diameters. 
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Fig. 21. Problem No. 211.3, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have moved 2.38 
cylinder diameters. 
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Fig. 22. P roblem  No. 211.3, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream  particles have moved 5.12 
cylinder diameters. 
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Fig. 23. P roblem  No. 211.4, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream  particles have moved 3.89 
cylinder diameters. 
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Fig. 24. Problem No. 211.4, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles ha&e moved 3.97 
cylinder diameters. 
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Fig. 25. Problem No. 211.4, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have moved 4.36 
cylinder diameters. 
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Fig. 26. Problem No. 211.4, R = 100, 
Medium Mesh; O ld boundary condition; 
Free s tream partic les  have moved 5.16 
c y linder diameters. 
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Fig. 27. Problem No. 211.4, R = 100, 
Medium Mesh; O ld boundary condition; 
Free s tream partic les  have moved 5.95 
c y linder diameters. 
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Fig. 28. Problem No. 211.4, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have.moved 6.74 
cylinder diameters. 
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Fig. 29. Problem No. 211.4, R = 100, 
Medium Mesh; Old boundary condition; 
Free stream particles have moved 7.54 
cylinder diameters. 
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Fig. 30. P roblem  No. 211.41, R = 100, 
Medium Mesh; New boundary condition; 
Free stream  particles have moved 8.73 
cylinder diameters. 
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Fig. 31. P roblem  No. 211.41, R = 100, 
Medium Mesh; New boundary condition; 
Free stream  particles have moved 9.92 
cylinder diameters. 
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Fig. 32. Problem No. 211.41, R = 100, 
Medium Mesh; New boundary condition; 
Free stream particles habe moved 
cylinder diameters. 

11.1 

Fig. 33. Problem No. 211.41, R = 100, 
Medium Mesh; New boundary condition; 
Free stream particles have moved 12.2 
cylinder diameters. 
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Fig. 34. Problem No. 211.41, R = 100, 
Medium Mesh, New boundary condition; 
Free s tream partic les  have moved 13.9 
c y linder diameters. 

F ig. 35. Problem No. 211.41, R = 100, 
Medium Mesh, New boundary condition; 
Free s tream partic les  have moved 14.7 
c y linder diameters. 
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Fig. 36. Problem No. 211.41, R = 100, 
Medium Mesh; New boundary condition; 
Free stream particles have moved 
15.9 cylinder diameters. 
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Fig. 37. Problem No. 211.42, R= lUU, 
Medium Mesh; New boundary condition; 
Free stream particles have moved 17.1 
cylinder diameters. 
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Fig. 38. Problem No. 211.2, R = 5000, 
Medium Mesh; Free stream particles 
have moved 4.77 cylinder diameters. 
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Figure 39 

Calculated Pressure Distribution Around a Circular 
Cylinder During the Starting Process for R = 1000. 
Medium Mesh Used for the Numerical Calculations. 
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Figure 40 

Calculated Pressure Distribution Around a Circular 
Cylinder During the Starting Process for R = 1000. 
Fine Mesh Used for the Numerical Calculations. 
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Figure 41 

Pressure Variation as a Function of Time-Step for Each of Four Contiguous 
Zones Located Near the Most Downstream Part of the Cylindrical Surface; 
R= 1000, Fine Mesh Used for the Numerical Calculations. 


